
The Durability of
Software

Seth Erickson and Christopher M. Kelty

Software is neither material nor immaterial but
durable,	entrenched	and	scaffolded.	In	this	article	
we suggest that services and software should be
understood through the diverse forms of durability
and temporality they take. We borrow concepts from
evolution and development, but with a critical eye
towards the diagnosis of value(s) and the need for
constant maintenance. We look at examples from
diverse cases—infrastructural software, military
software,	operating	systems	and	file	systems.

Our goal this week is the conversion of

mushyware to firmware, to transmute our

products from jello to crystals.

(Alan J. Perlis in NATO, 138)

A Software Coelacanth

In April 2014, a 60 Minutes report made a brief splash when it
revealed that the United States live nuclear weapons arsenals
are using “antique” software and hardware, such as floppy disks,
microfiche and radiograph data and software written in the
1970s. The Internets mocked the hopelessly outdated technology;
John Oliver’s studio audience for Last Week Tonight audibly gasped
when he showed them the image of a missileer holding an 8inch
floppy disk. Oliver’s commentary: “Holy Shit! Those things barely
look powerful enough to run Oregon Trail, much less earthending
weaponry.”

Many people accustomed to constant updates, rapid release
cycles, betatesting and automatic upgrades found the story
shocking—viscerally so since it concerns the deadliest weapons
on earth. The “silver lining,” as a Vice article put it, quoting Major
General Jack Weinstein, was that “cyber engineers [who analyzed
the network last year] found out that the system is extremely
safe and extremely secure in the way it ’s developed” (Richmond
2014). The dramatic tension is thus driven by something unstated
(that newer technology is always safer, better, more efficient
than old, legacy systems) in conflict with something intuitive (that
it makes very good sense not to connect these weapons to the
Internet).

The software and hardware systems that run these 1970s era
Minuteman launch control systems are a kind of technological

41coelacanth: a living fossil. Isolated, highly engineered, rigorously
(one hopes) maintained, but never upgraded or changed. Con
trast this with what we might think of as the cichlids of con
temporary software: mobile apps, games, websites, APIs and
services that appear hourly, where updates are constant and the
rate of extinction equally rapid.1 The rise of Software as a Service
(SaaS), Service-oriented Architecture (SOA) or the cloud seems to
suggest that a qualitative shift towards a kind of hyperinsta
bility is taking place: instead of a stable program nothing but a
temporary relationship of queries across interfaces and devices,
rendering something that was immaterial even more airy and
vaporous. It would seem to follow that our economy and culture
are also becoming similarly cloudy—precarious, uncertain, dis
tant, contracted.

The apparent transition—from software to services—raises a
question: are they different? What is the difference, and how best
is that difference described? On the one hand, one might assert
that there is no difference at all because the concept of service
was built into software from the very beginning. Indeed, before
the word or the object software existed, there were programming
services.2 Software had to be unbundled and productized to achieve
a stability and singularity we colloquially attribute to things
like Microsoft Word or Adobe Creative Suite. Whether it be the
computer utility of the 1960s or the thin clients and netPCs of the
1980s when Sun declared “the network is the computer,” services
have been a constantly desired goal all along. On the other hand,
services today appear quite different: the ease of reconfiguration,
the openness of their accessibility, the standardization of their
functioning, and the reliance on a datacenterascomputer
model all seem to turn software, databases, archives, indeed

1 Cichlids are common, rapidly diversifying fish, comprising between 2000 and
3000 species, including things like Angelfish and Tilapia, and exhibiting a
stunning diversity in morphology and behavior.

2 On software services see CampbellKelly and GarciaSwartz (2011), Campbell
Kelly (2009). Chun (2011) also makes this point.

42 even whole companies into ephemeral conduits of information,
query or control. Stable productized software disappears in place
of unstable, contractual arrangements—Adobe Creative Suite
becomes Adobe Creative Cloud, Microsoft Word becomes Office
365—replete with a shift from a sense of ownership to one of
servitude.

But the desire to fix the difference between the two falls into an
ontological trap—demanding that the difference between the
two be an abstract one of properties and kinds (and rights) rather
than one of temporality and use amongst humans. Software
studies occasionally suffers from a philological fantasy that
the conditions of operation of software are territorialized by
programmability, rather than the programmability of software
being terrorized by time. Software and service are thus an entan
gled set of operations which are better viewed from the per
spective of duration and temporality, and in particular that of an
evolutionary frame, than from the perspective of code, conduit,
circuit, network, or other aspects that privilege a spatiality or an
intellectual abstraction that relies on spatiality to make sense of
it.

So in between the coelacanth of the MinuteMan missile
software, and the cichlids of the Apple App Store lies a whole
range of software existing at different temporalities and
with different levels of durability. An evolutionary approach
makes sense here, but not simply in order to describe this
diversification, but to critically analyze where and how value
and values—novelty, most centrally, but also security, safety,
freedom, health or risk—are structuring these temporalities.
“Evolution is not just any change and stasis, but particular
patterns of change and stasis, patterns that tend to preserve
ancestry” (Wimsatt and Griesemer 2007, 283, emphasis added).

We are far from alone in turning to the ideas of evolutionboth
those who create software and those who study it frequently
do so. For instance, within the field of software engineering, the

43language of software evolution often replaces that of repair and
maintenance.3 And socalled “artificial life” researchers have
long fallen prey to the fantasy that because a program evolves
it must be alive (Helmreich 1998; Riskin 2007). More recently,
Lev Manovich, among others, has adopted a loose language of
evolutionary theory—but only, he insists, as a metaphor—to
explain change over time in the domain of mediaproduction
software (Manovich 2013).

Our exploration of evolutionary theory is not metaphorical, but
critical and analytic, viz. how to analyze populations of software
differentially, and in order to diagnose the values, ideologies
or cultural technologies at work in and through software. Our
focus is not on code or the program, but on the population of
software—as engineers might say, the installed base of software,
which necessarily implies an ecology of users, designers,
maintainers, as well as organizations and physical facilities that
must be kept running: made durable.

The durability of software is not an internal feature of a particular
software program or service, nor a feature of an abstract
programmability or mathematical facet, but instead a feature of
its insertion into a social, economic and cultural field of intention
and expectation where it becomes differently. The Minuteman
silo stays stable for reasons that are different than the “sta
bility” of the Linux kernel (which changes often, in the name of a
stability that maintains an unknowable range of possible uses).

3 See for example the Journal of Software Maintenance, so called until 2001,
when it was renamed the Journal of Software Maintenance and Evolution, until
2012, when it merged with Software Process and Improvement to become The
Journal of Software: Process and Evolution. There are countless examples of
the colloquial use of the term evolution in software engineering, but there
are also more precise attempts to characterize software evolution, primarily
as an analysis of the internal evolution, or ontogeny, of a program (facilitated
by the technology of versioning control systems) such as Mens and Demeyer
(2008). There is also a ubiquitous phylogenetic obsession amongst software
programmers visible in the array of trees documenting the descent of
different software, e.g. Lévénez’s Unix chart (2015).

44 The becoming of a service such as Facebook Connect is much
different than the simple query API provided by the Oxford English
Dictionary. Both are services, both depend on money and humans
who care about them—but the dynamics of their evolution and
stasis are much different from each other.

Evolution therefore is not just a theory of change or duration—it
is also about how aspects of the past are preserved differentially
in different ecologies. Software does not evolve the same way
everywhere—like life it is constantly diversifying. Recognizing
variation, heterogeneity, and the preservation of the past in the
present can serve an important analytical and critical function: to
identify the values, ideologies and cultural technologies that keep
some systems stable and slowly changing while demanding that
others seem to change “at the speed of thought.”

Software is not immaterial—this much is clear to anyone who
studies it. But nor is software a substance. The replacement of
software by services, if such a replacement is actually occurring,
may be interpreted less as an ontological or material shift, and
more as a shift in the relationships of concurrency, dependency
and durability—software too has “modes of existence” (Latour
2013).

In this article we borrow two notions from developmental
evolutionary theory in order to think about the patterns of
change and stasis in software: generative entrenchment and
scaffolding. Wimsatt and Griesemer use these terms in order
to argue for a developmental understanding of cultural and
biological evolution, as opposed to a strictly gene/meme centered
(á la Dawkins) one or a “dualinheritance model” (Richerson and
Boyd 2005). This is felicitous given the concrete fact that software
is always paired with the word development—though we ought to
be careful distinguish a “developmental biology of software” from
software development as an established methodology. We argue
here that durability—perhaps even “enduring ephemerality”
as Chun (2011, 167–173) calls it—is a result of robustness and

45generative entrenchment—viz. when software becomes
foundational or otherwise locked into a network of uses and
expectations, signaled by maintenance—another key term in
our analysis—and driven by particular cultural and economic
value(s). Maintenance of software, as software professionals
often recognize, is not quite the same as maintaining a bridge or
freeway: it is not about wear and tear or the failure of particular
bits of software. Rather it is about keeping software in synch with
changes and dependencies made in other software and systems
(Ensmenger 2014).

Layers,	Stacks,	Entrenchments,	Scaffolds	

In most engineering textbooks, information systems are layered
into stacks—often a pyramid—with material, physical layers on
the bottom and an increasing ephemerality as one ascends.4
Such layers do exist, but they are hardly ever so clean. In fact, it
can sometimes be harder, more expensive or more dangerous
to change a bit of software than the hardware or the infra
structure on which it is supposedly layered or stacked. Generative
entrenchment is a real feature of developmental entanglements,
one that generates innovations by virtue of the very necessity
of the entangled part or function.5 How these entanglements
came about is a not preordained or mechanical: it is matter for
historical research into the development of a project, the spread

4 There are numerous meanings of the term stack in the history of software.
Sometimes it refers to an abstract data type in a programming language
(adding something to a memory stack); sometimes it refers to a layering of
different technological features, as in a protocol stack; and a more recent,
more colloquial usage (e.g. solution stack) includes the range of tools—
programming languages, package managers, database, libraries—that make
up a particular web framework used for rapidly building and deploying
apps in different contexts. What they share is the attempt to capture how
software is always stacked, layered or interconnected in progress. No
software is an island, etc.

5 Blanchette (2011) discusses the example of modularity ’s effects on cross-
layer innovation.

46 of software, the standards guiding them (or failing to), and the
reliance on expectations about the future of other components
in a system, and the values organized in lines of force around a
given software system.

Scaffolding as a concept serves a related analytical purpose.
In building, scaffolding is necessary but ultimately disappears
when a structure is complete (thought it often reappears for
maintenance). In developmental psychology, scaffolding happens
when people provide boundaries within which others can learn
and develop skills. As they repeat these skills, the boundaries
become less necessary. In the process of software testing,
something similar happens: tools representing these boundaries
(use cases, testing suites, different software environments
like browsers, or common failure scenarios) are constructed
around the software to test how it responds—as it is revised and
improved these testing systems are torn down and disappear.
As the software stabilizes and becomes more robust, it becomes
generatively entrenched amongst other software systems and
tools. Something of this process is captured by the process
known ubiquitously in software engineering by the name of boot-
strapping: the use of one software system to design or construct
another that either supplements or replaces it. Similarly, beta
testing might also be interpreted as using real users (or early
adopters) as scaffolding.

The appeal to these developmental evolutionary concepts is
not proposed simply in order to provide a description of pure
dynamics, complex or simple. Rather, by identifying dynamics
and patterns, we can show how the values and the logics
operate: some entrenched software is maintained and some is
not, and maintenance implies a set of values that require critical
interpretation (Jackson 2014; Orr 1996). Not all software is
maintained because it is economically valuable—Minuteman III
missile systems, for instance, or the software that runs a power
grid. Failing to maintain it may have economic effects, but it is
maintained primarily in virtue of other values: security, safety,

47health, mobility, secrecy, etc.6 Even “archived” software must
be maintained, and represents particular values: preservation,
recovery, evidence (Kirschenbaum 2008).

Beyond Old and New

It should not come as a surprise that there is great diversity in the
world of software. What is surprising is that we have no good way
of taxonomizing it—or studying it—other than the language of
old, outdated, or obsolete vs. “cutting edge” or new. The language
of innovation privileges the linear and the incremental over the
spread of diversity or the interaction of different temporalities.
The supremacy of the value of novelty or innovation is a
peculiarly modernist and Western notion: novelty at all costs!
And it implies a similar and opposite mistake: to think of the old
as similarly linear and incremental—as deposited, archived, for
gotten and in need of constant renewal. In fact, the perspective
of evolution demands a perception of newness everywhere
and in many different forms that persist: the past is not super
seded, but preserved, differentially and in response to a changing
ecology (consisting of other things that are similarly new and old
at the same time).

The key critical or analytic moment therefore is not the
identification of the new, but the identification of a distinct
population—a kind of curatorial maneuver—the drawing of
boundaries around a set of instances of the same kind such that
diversity and differentiation are made to appear. A few examples
might indicate a different path for how to study software.

To begin with: particular populations of operating systems (OS) are
arguably the most entrenched—and most generative—aspect

6 In fact, there is a relatively robust economic niche where “obsolete”
software is maintained, e.g. The Logical Company (2015) which recreates
“hardware, software and diagnostic compatible” versions of DEC’s 1970s PDP
computers, giving that software a new temporality and durability

48 of our software ecology. They come in many forms, from the
consumerfocused iOS and Android mobile OS (which is on
the order of 10 years old) to UNIXderived operating systems
(which are on the order of half a century old). Add to this the
various populations that are in some ways both old and new. The
OpenVMS and Alpha operating systems were originally designed
in 1970s for DECVAX computers, but are still in use in old, new,
updated, emulated and migrated forms; OpenVMS runs India
Railways’ reservation system and the Paris Metro’s automated,
driverless line 14.7

Similarly, entrenched programming languages (COBOL and
FORTRAN) were at the heart of the Y2K hysteria. Although the
predicted apocalypse did not come, it did reveal the problem of
maintaining software—both its costs, and the kinds of values
(in this case, fear of apocalypse) that are necessary to disembed
entrenched software. Military systems, public infrastructure,
factory process control (SCADA) systems, all contain various
forms of entrenchments and dependencies—some of which
are revealed dramatically (e.g. the case of the Stuxnet virus),
some of which are revealed only slowly through maintenance or
breakdown.

Entrenchment and scaffolding can also make sense of the variety
of basic tools in use by software programmers—from compilers
like gcc to programming languages, libraries and their bindings.
The latter—language bindings—are a good example of generative
entrenchment. Libraries of commonly used code in an operating
system are often written in particular languages, such as C, C++
or assembly, often to facilitate reuse, and sometimes to make
code more efficient (an algorithm in C can be made to run much
faster than one in Perl, for instance). But because these libraries
are “entrenched” in the operating system, they “generate” the
need for bindings: bits of code that access and sometimes

7 See for example HewlettPackard Invent (2002) and Wikipedia contributors
(2015).

49recompile a library for use with another programming language.
Old technologies “scaffold” new ones: stories of programmers’
need to rewrite a program in another language (whether for
efficiency or elegance, or to access parts of an entrenched
system) are everyday evidence of the scaffolding process.

Indeed, in 2015, the range of new programming languages
and frameworks for rapidly building and deploying software
have created vast but fragile webs of entrenchment and inter
dependency. Web programming frameworks like Drupal and
Ruby on Rails are rapidly evolving—the underlying programming
languages (e.g., Ruby and php) are relatively new, the frame
works themselves are evolving as their developers refine their
approaches to the web, and (perhaps most importantly) the
individual modules and plugins for extending these frameworks
lead to a kind of “dependency hell.” One commentator (Hartig
2014) reflecting on this historical difference in software said
“compiling a C program from more than 20 years ago is actually a
lot easier than getting a Rails app from last year to work,” a clear
indication, as evolutionary theory predicts, that innovations are
abundant, but not necessarily advantageous.

Some kinds of software are not generatively entrenched, even if
they persist in time or remain durable. The Minuteman missile
base is an example—no other software or hardware depends on
the software created to control those missile launch facilities, but
it is nonetheless durably maintained as a closed system.

Other software is maintained because it is entrenched—both
technically and culturally. Take for instance the whole system
of software that makes an abstraction of a file possible: file
systems, memory allocation, attributes and permissions, and
directory hierarchies. As the authors of a Microsoft Technical
Report (Harper et al. 2011) point out, the concept of file as a unit
of data with associated attributes (e.g., ownership, permis
sions) and canonical actions (copy, edit, delete) has proven to be
remarkably robust, changing little over the last forty years. Most

50 operating systems are built around files, which manage allocation
of memory and access to data; pipes and files were central to
the design of UNIX, which treats everything as a file, including
external devices like printers (accessed through device files).
Humans are also built around files: we expect them to function
in particular ways, to be stable and findable, to be ownable and
sharable.

Although the file is a seemingly essential concept, it is challenged
by service oriented computing or cloud computing where a new
kind of “social” data is associated with files, and where files exist
simultaneously on multiple devices. In this case it is not so much
a particular piece of software code, but an essential “abstraction”
(and an implied set of interoperable components) that is
entrenched both in the hardware, and in the expectations of
users. It is generative because the file cannot simply be replaced
in toto, but rather must be “piecewise” reengineered, guided by
particular values.

Blanchette’s example (2011) of the Google File System dem
onstrates that even if the file is not what it used to be, we
still need the abstraction as a way to get the file to appear
manipulable and stable on a set of virtualized servers (preserving
it, and further entrenching it). Engineers might agree that there
are “better” ways to do things, but the file cannot be so easily dis
embedded from both human and machine consciousness.

But: it is changing. Scaffolding can help us see how. iOS and
Android operating systems both “hide” files from users. They are
not yet gone—the OS still relies on them—but are embedded
inside an app which has very quickly become the primary mode
of interacting with software on most devices (Apple 2014). It is
very hard to “open a file” on a phone or iPad, because the system
is designed to hide files and metadata about files inside an app—
which is now intended to be the primary abstraction for humans.
For most purposes, however, apps do not require users to open
or close important files, and they solve the question of “where is

51my stuff?” by putting it inside the app (and “in the cloud”). This
creates a kind of scaffold whereby users can change from an
understanding of apps that open files, to one where apps have
data and resources tied to users, accounts and devices. Some
populations change faster than others.

This transition, however, is not simply an evolutionary fact.
Rather, by understanding the generative entrenchment and
scaffolding of files and apps, we can turn a more critical eye on
what are otherwise simply dubbed technological or engineering
concerns. Among other things, the file abstraction supports a
particular model of property rights in which digital objects are
literally designed around stable property ownership: files must
have owners and permissions. Apps, by contrast, are designed
around a different field of rights and laws: contracts and terms of
service—specifically nonnegotiable contracts in which the app
provider has significantly more rights than the app user.

This is the “cultural technique” at the heart of the transition
from software to services: 20th century intellectual property
rights law was designed for intangible property fixed in “tangible
media” and the myriad ways in which media was so fixed in the
era of Film, Gramophone, Typewriter (Kittler 2006). Contract law,
by contrast is not about a relationship between the intangible
and the tangible, it is about the fixed duration of a relationship
of trust, and a way of structuring the future in terms of liability
and responsibility. It is not an either/or situation, but as more and
more users enter into contracts, instead of purchasing property,
the software itself changes to support this cultural practice.

Apodosis: Legacy

The word legacy is one with a precise meaning in the history of
information technology. Legacy systems are every IT manager’s
bogeyman; they are the cause of lock-in they are the emblem of
the evils of proprietary software; they are the cause of Y2K bugs
and the scourge of cybersecurity, they represent the evils of

52 corporate capitalism, the domination against which free software
and Open Source are often pitched in battle.

But if evolution is “particular patterns of change and stasis
that preserve ancestry” then there is no way out of a legacy.
Not all legacies are equally momentous, however, just as not
all inheritances are equally large. We would do well to develop
a better understanding of how ancestry has been and is pre
served in software systems, if we want to make any claim that
innovations like SaaS actually represent some break with the
past. On the contrary—some services will become entrenched;
the seemingly flexible solution stack of today is the legacy system
of tomorrow. Even more importantly, there is no single legacy,
but a pattern of differences: a diversification with respect to
environment. And if we want to analyze the difference these
differences make, we must move away from treating software as
substance—whether material substance or thought substance:
program, code, algorithm.

Actor Network Theory makes a simple point here: we do not live
in a world with humans as the foundation, nor in one simply run
by the automaticities of machines, but in a world of relations and
modes. The difference that software makes depends on how it is
inserted into the relations amongst our associations—but it is not
inserted the same way everywhere. The effect of software—the
difference it makes—depends on the “patterns of change and
stasis which preserve ancestry” at play in any given case.

Thinking in terms of scaffolding and generative entrench
ment might be an antidote to the relentless antihumanist
teleology so common in both popular and scholarly thinking.
That teleology—a kind of neoSpencerianism—is driven by
punditry and criticism that demands of software (and technology
generally) that it obey a law of evercomplexifying, everaccel
erating progress towards either the domination of some
imagined allpowerful capitalism or the liberationdestruction

53of some fantasized autonomous artificial intelligence.8 This
Refrain of Constantly Accelerating Change contains a grain of
truth—software has enabled new patterns, new durabilities—but
it misses the existence of diversity in the world, and the ways in
which it preserves ancestry. To view software evolution as an
institutionally and culturally heterogeneous object might allow us
to critically diagnose its real effects, rather than running ahead to
the next new thing in order to declare its sudden dominance, and
the irrelevance of all the rest.

We thank the Part.Public.Part.Lab members for valuable con-
versation and feedback, Irina Kaldrack and Martina Leeker for
incisive comments, and the Digital Cultures Research Lab of Leu-
phana University for the invitation to contribute

Bibliography

Apple. 2014. “File System Basics.” iOS Developer Library. Accessed May 23, 2015.
https://developer.apple.com/library/ios/documentation/FileManagement/Con
ceptual/File SystemProgrammingGuide/FileSystemOverview/FileSystemOver
view.html.

Blanchette, JeanFrançois. 2011. “A Material History of Bits.” Journal of the American
Society for Information Science and Technology 62 (6): 1042–1057.

Bogost, Ian. 2015. “The Cathedral of Computing.” Atlantic Monthly, January 15.
Accessed May 25, 2015. http://www.theatlantic.com/technology/archive/2015/01/
thecathedralofcomputation/384300/.

CampbellKelly, Martin. 2009. “Historical reflections: The Rise, Fall, and Resurrection
of Software as a Service.” Communications of the ACM 52 (5): 28.

CampbellKelly, Martin, and Daniel D. GarciaSwartz. 2011. “From Products to
Services: The Software Industry in the Internet Era.” Business History Review 81
(4): 735–764.

Chun, Wendy. 2011. Programmed Visions: Software and Memory. Cambridge, MA: MIT
Press.

8 See, for example, Ian Bogost ’s oped on the subject “The Cathedral of
Computation” (2015).

54 Ensmenger, Nathan. 2014. “When Good Software Goes Bad: The Surprising
Durability of an Ephemeral Technology.” In MICE (Mistakes, Ignorance, Con-
tingency, and Error) Conference. Munich. Accessed May 23, 2015. http://homes.
soic.indiana.edu/nensmeng//files/ensmengermice.pdf.

Harper, Richard, Eno Thereska, Siân Lindly, Richard Banks, Phil Gosset, William
Odom, Gavin Smith, and Eryn Whitworth. 2011. What Is a File? Microsoft Research
Technical Report MSR-TR-2011-109. Redmond, WA.

Hartig, Pascal. 2014. “Building Vim from 1993 Today.” SVBTLE. Accessed May 23, 2015.
http://passy.svbtle.com/buildingvimfrom1993today.

Helmreich, S. 1998. “Recombination, Rationality, Reductionism and Romantic
Reactions: Culture, Computers, and the Genetic Algorithm.” Social Studies of
Science 28 (1): 39–71.

HewlettPackard Invent. 2002. “Success Story.” Accessed May 25, 2015. http://
h71000.www7.hp.com/openvms/brochures/indiarr/.

Jackson, Steven J. 2014. “Rethinking Repair.” In Media Technologies: Essays on
Communication, Materiality and Society, edited by Tarleton Gillespie, Pablo J.
Boczkowski, and Kirsten A. Foot: 221–239. Cambridge, MA: MIT Press.

Kirschenbaum, Matthew. 2008. Mechanisms: New Media and the Forensic Imagination.
Cambridge, MA: MIT Press.

Kittler, Friedrich A. 2006. Gramophone, Film, Typewriter. Stanford, CA: Stanford Uni
versity Press.

Latour, Bruno. 2013. An Inquiry into Modes of Existence: An Anthropology of the
Moderns. Cambridge, MA: Harvard University Press.

Lévénez, Eric. 2015. “Unix History.” Accessed May 23, 2015. http://www.levenez.com/
unix/.

Manovich, Lev. 2013. Software Takes Command: Extending the Language of New Media.
London: Bloomsbury Publishing.

Mens, Tom, and Serge Demeyer. 2008. Software Evolution. New York, NY; London:
Springer.

Nato. 1968. “Software Engineering.” Report on a conference sponsored by the NATO
SCIENCE COMMITTEE. October 7–11, Garmisch. Accessed May 27, 2015. http://
homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

Orr, Julian E. 1996. Talking About Machines: An Ethnography of a Modern Job. Ithaca,
NY: ILR Press/Cornell University Press.

Richerson, Peter J., and Robert Boyd. 2005. Not by Genes Alone: How Culture Trans-
formed Human Evolution. Chicago, IL: University of Chicago Press.

Richmond, Ben.2014 “America’s Nuclear Arsenal Still Runs Off Floppy Disks.” Moth-
erboard (Vice Magazine), April. Accessed May 23, 2015. http://motherboard.vice.
com/read/americasnucleararsenalstillrunsofffloppydisks.

Riskin, Jessica. 2007. Genesis Redux: Essays in the History and Philosophy of Artificial
Life. Chicago, IL: University of Chicago Press.

The Logical Company. 2015. “Home.” Accessed May 23, 2015. http://www.logicalco.
com/.

